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Abstract-The viscoelastic and plastic properties of globular colIoids are treated on the grounds of the 
strictly linear Onsager theory of irreversible processes. In the case of emulsions, the effect of interfacial 
tension is also taken into account. The intricate mechanical behaviour of colloids is reported by classical 

non-equilibrium thermodynamics using only three material constants. 

INTRODUCTION 

IN RECENT years the Onsager theory of non-equi- 
librium processes proved an excellent method for 
treating rheological phenomena. The versatility of the 
method is shown here for the example of globular 
colloids, which are very important as they are present 
almost everywhere in technology. We mention only 
some foodstuffs, such as milk, butter or various kinds 
of paste, paints, some lubricants, adhesives, etc. Their 
viscoelastic and plastic behaviour is very important 
and the easy description is considerable in engin- 
eering. 

The model used here for colloidal systems is rather 
simplified, nevertheless, the final results can be gener- 
alized with ease. The body is supposed to be fluid 
and to have two phases. The continuous phase is a 
Newtonian fluid, while the dispersed phase consists of 
elastic spheres of uniform size, moreover, we will only 
be concerned with isochoric (i.e. steady volume) 
motions. 

THERMODYNAMIC PRELIMINARIES 

As a starting point of the thermodynamics treat- 
ment, the elastic energy of the colloid particles is 
assumed to be not dissipated. This means that the 
specific entropy can be calculated from the internal 
energy after reducing it with the elastic energy 

(1) 

where s is the specific entropy, u the specific internal 
energy, p the average density, c!~ the volume fraction 
of the dispersed phase, and p the shear modulus of 
the spheres. The strain tensor E_ of the particles is 
symmetric and has zero trace, moreover, it equals zero 
in any equilibrium state. Making use of the balance 
equation of internal energy 

pti+divJ, =!:a (2) 

where t is the deviatoric part of Cauchy’s stress and a 
is the symmetric part of the velocity gradient tensor, 
we obtain 

Ta, = t:d-24pE:k -gJ;gradT. (3) 

Here T is the temperature, J, the heat flux and a, 
the entropy production density. The details of the 
calculations are given in refs. [ 141. 

We mention that equation (3) is valid in case of any 
frame of reference according to the Gibbs-Duhem 
equation. For this reason and keeping convenience 
in mind, the time derivative of the strain tensor is 
evaluated in a corotating frame and transformed to 
the actual one afterwards. This means that the so- 
called Jaumann derivatives of the tensors are used 
from now on. The third term on the right-hand side 
of equation (3) concerns the heat conduction, which 
does not interest us in this paper. So, dropping this 
term and using the objective time derivative, we obtain 

Ta, = J :&2&g ~8. (4) 

This is the very form of the entropy source strength 
that can be applied to obtain the constitutive equa- 
tions [l-3]. Onsager’s linear laws result in 

t = L,,&2~~L,*E 

E” = -L&2q+L& 
(5) 

Since the entropy production is always positive, we 
have the inequalities 

L,, > 0, L,, > 0. (6) 

Sometimes the deformation of the particles is not of 
interest to us. In this case, it is worth eliminating it 
from equations (5) to give 

t+rtP= 2rj@+r,J), Tc > rd > 0, q > 0. (7) 

Here we have introduced the notations 
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NOMENCLATURE 

d symmetric part of the velocity gradient 
tensor 

ai,, Cartesian components of the velocity 
gradient tensor (i, k = 1,2,3) 

J, heat flux density 

L,,,L**,L,* Onsager’s coefficients 

P complex frequency 

s specific entropy 

2 deviator% part of Cauchy’s stress tensor 
T temperature 
U specific internal energy 
U* quantity defined in equation (1) 

a,, uv, az Cartesian components of velocity. 

Greek symbols 

?* average (complex) viscosity 

?O viscosity of the continuous phase 

flK viscosity of the Kelvin body defined in 
equation (30) 

K rate of shear 

P shear modulus of the dispersed phase 

P* average (complex) shear modulus 
,u,, (complex) shear modulus of the 

continuous phase 

PK shear modulus of the Kelvin body defined 
in equation (30) 

P average density 

a, entropy source strength 

a(~) normal stress function 
0 normal stress 

zl, rd, 9 material constants defined in 
equation (8) 

Z(K) shear stress function 

6 volume fraction of the dispersed phase 

w angular velocity tensor (i.e. the skew 
symmetric part of the velocity gradient) 

wik Cartesian components of the angular 
velocity tensor (i, k = 1,2,3) 

0 angular velocity vector (i.e. the vector 
invariant of a) 

wi Cartesian components of the angular 
velocity vector (i = 1,2,3). 

1 L,, 

rr=-’ rd=2&(L,,L**+L:*); 2&+L22 ’ 

2q=L,, +F. (8) 
22 

The constitutive equation (7) shows a close analogy 
to that of a Jeffery body and is identical to it if no 
rotation occurs. The difference lies only in its deri- 
vation but this slight deviation results in remarkable 

consequences. 

SMALL OSCILLATIONS 

In the case of small oscillations, the objective 
derivatives approximately equal the ordinary ones, 
then the constitutive equation (7) becomes 

l+zdPcq 
t=2r]--- 

1 +rlp- 

where p is the so-called complex frequency. The values 
of the phenomenological coefficients are determined 
by comparing the complex viscosity given above with 
the formula derived by Oldroyd for the same model 
of globular colloids [5]. The Oldroyd formula is 
explicit for the shear modulus 

(2+3$)~+3(1-4)~, 
‘* = ‘“2(1-@~+(3+2@~, 

(10) 

where p*, p and p. are the shear moduli referring to 
the colloid system, the dispersed material and the con- 
tinuous phase, respectively. Introducing complex vis- 
cosity, equation (10) becomes 

(2+34)/*+3(1--4)rlop 

‘I* ="02(1-~)p+(3+2~)~op' 
(11) 

Hence, the coefficients in equation (7) are 

3(1-4) ro 
=d=mF (12) 

The inequalities in equation (7) can be checked. 
In the following we discuss some simple solutions 

of equation (7). 

RECTILINEAR SHEARING FLOW 

To determine the viscometric functions, suppose 
that the velocity field in a Cartesian frame of reference 

is given by 

0.X = KY, vy =v, =o. (13) 

The calculations are done in matrix notation. The 
matrices of d and w (the skew symmetric part of the 
velocity gradient) are 

and 

0 1 0 

@I=; [ -1 0 0 1 (14) 
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UNIAXIAL TENSION 
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In the case of rather concentrated solutions, the 

viscosity at small loads is high enough to prepare 
specimens for tension tests. The behaviour of globular 
colloids in tension and compression is studied next. 

Suppose that the stress tensor is given by the matrix 

K 

FIG. 1. Shear stress vs shear rate. 

0 0 0 
rt,otaJ = 0 0 0 . 

[ 1 0 0 0 

The deviatoric part of it is 

2 0 0 

[&O -1 0. 

[ 1 (18) 

0 0 -1 

The line elements parallel to the x-axis (the direction 

of traction) are supposed not to rotate, moreover, 
for stationary motions, the y-axis is chosen such that 
w , ) = 0. These result in 

FIG. 2. Normal‘stress vs shear rate. 

while the matrices of d” and t’can be calculated by 
@I = 

_d = &g-c& (steady) 

-0 -wj 0 

w3 0 -aI 

0 WI 0 1 
and 

f= t’o--o’t 
@I = 

-- __. (steady) 

Inserting the matrices into equation (7), we get for the Furthermore 
deviatoric part of the stress tensor 

with 

Z,_Zd K ?(K)=;qK+- 
‘t, 1+2:K2 (16) 

@I = 
and 

a(K) = 
tl(? -G)K2 

1+r:rC2 . (17) 

The shearing stress function r (rc) and the normal stress 

a II -03 

-w3 B 22 

0 B 23 

0 -wj 0 

[JS=cJ [ -co3 0 0 

0 0 0 

1,3 (19) 
a 33 I 

-204 03 (822 -4 I > 

w3 (222 -4 I) 24 +20, a,, 

w3 h +az3) -w1 (4, +2a2,) 
w3 co1 +a23) -wI (a,, +2a2,) . -2w,a23 1 

difference function Q(K) are plotted in Figs. 1 and Inserting these in equation (7) yields 
2, respectively. EZamination of the shearing stress 
function plotted in Fig. 1 leads to the conclusion that 
the colloid system at hand has plastic properties if the -332,w3 0 

volume fraction of the dispersed phase is greater than 0 = 

50%. -1 1 
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Remember that the motion is volume preserving, 
hence if,, +d2* fax3 = 0. The solution of the matrix 
equation is a bit easier if we assume (r, $, ,, dz2, A,, and 
$23 as functions depending on w, and w1 temporarily. 
This way the scalar equations are linear and the sol- 
ution is obtained in parametric form. For further con- 
siderations we write the scalar equations as follows : 

(21) 

The last two equations show clearly that three dif- 
ferent cases can be distinguished. In the first case 
(0, = (uj = 0, in the second case o3 # 0 but o, = 0 
and in the third case both the components of angular 
velocity differ from zero (w, # 0, u13 # 0). The dis- 
cussion of the first case is rather simple, and the sol- 
ution is given in tensorial notation as 

1 
C+,,!. (22) 

We mention here that this solution remains valid when 
w, ti 0 but this circumstance has no physical sig- 
nificance, it simply means that the system rotates 
around the direction of traction. The second case is 
much more interesting. The actual value of w3 is deter- 
mined from equation (21), and the components of the 
tensor d are given in the first, the second and the 
third equation. To save time and room, we write the 
equation for 8,, only 

4, = j& (3x, +r,) - &. (23) 

The condition of existence of the second case is 

&(r&)-1 =42,:w: 20. (24) 

This third case is similar to the second one, but this 
time equation (21), is also involved. That is 

and the condition of case 3 is 

(25) 

;(ri-Q)-3 = 62:~~: > 0. (26) 

In summary the rate of stretching d, , is given by the 
following function of a : 

(274 

The graph of the function is a broken line, which is 
steepest for case 3 and flattest for case 1 (Fig. 3). The 
occurrence of w, in the third case can be interpreted 
as follows : if the load of traction increases over the 
value of 6q/(7, - 7d)r then the angular velocity, which 
was steady in case 2, begins to rotate around the 
direction of traction, with angular velocity w , . Hence 
the motion is steady in a frame spinning also around 
the same axis with the same angular velocity. Here 
we repeat this function using the properties of the 
constituent 

2(1-4) @ 

3(2f 

21, = I 8+94+8cb2 CJ 2+3+ P 

1 

12(2+34)(1-4) q. 6(1-4) q. 
3+2$ 0 2+3& P 

90 -4) 110 3(1-4) ?o (27h) 

d < 2(2+3#)* 
’ 25# -’ 

2(2 + 3#)z < d < 6(2+3&* 
254 P’ ’ 25# P 

~ > 6(2 + 34)’ 
’ 259 i”* 

A simple analysis of stability based on equation (7) 
shows that the conditions indicated in equation (27a) 
are in accordance with the physical possibilities. The 
behaviour of the colloid medium under uniaxial com- 
pression is very similar. Now it is supposed that the 
planes perpendicular to the direction of compression 
do not change their orientation. The tensors in equa- 
tions (I 9) are 
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FIG. 3. Stretching vs normal stress. 

Furthermore, the stress tensor obeys equation (18) 
but, now, cr is negative. If the notations 

ai = -a, a;, = -a,,, a:, = -as2, 
a:, = -a33, a:, = -az3 

are applied, we get the same equations for the primed 
quantities as before, consequently, the function given 
in equation (27) has to be continued in an odd manner 
for negative values of a. 

SMALL LOADS 

In the case of rather concentrated colloid solutions, 
the rate of deformation at small loads is slow, hence 
it can be called ‘creep’. If we neglect this slow motion 
equation (7) can be reduced for small loads. 

Introducing 

(28) 

into equation (7) we obtain 

(r,-rJf= 2&*+rJ*). (29) 

If the creep term in equation (28) is omitted, the aster- 
isk can be dropped and a first integral of the equation 
is evaluated for small loads as follows : 

(5--J!= 2dd+(i-do1 (30) 

where 4, is a tensor constant in the corotating frame. 
We have obtained the constitutive equation of a Kel- 
vin body with the material constants 

The model we obtained takes into account elastic 
deformations before or after plastic flow. Finally, we 
mention that all the considerations above can be 

extended over emulsions. In that case, the effect of 
interfacial tension is taken into account by considering 
the stored energy which defines an apparent modulus 
of elasticity. Formulae become especially simple if the 
viscosity of the dispersed material is negligible as, e.g. 
in the case of foams. The apparent shear modulus is 

given as 

4Y 
P=G (32) 

where y is the interfacial tension and r the radius of 
the drops or bubbles. Its value depends on the size of 
the colloid particles, hence the heterodispersity causes 

some difficulties. 

CONCLUSIONS 

It is worth noting that the intricate mechanical 
behaviour of globular colloids has been described by 
the strictly linear Onsager theory. The nonlinearity of 
the differential equations is not due to a non-linear 

constitutive equation but to rotations. The non- 

linearity of our equations is similar to that of the 

Navier-Stokes equations. 
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THERMODYNAMIQUE IRREVERSIBLE POUR LES PROPRIETES RHEOLOGIQUES 
DES COLLOrDES 

R6sum&--Les proprietes viscoelastiques et plastiques des colloides globulaires sont trait&s sur la base de 
la thCorie lit&ire d’onsager des mkanismes irrkversibles. Dans le cas des emulsions, on prend aussi en 
compte l’effet de la tension interfaciale. Le comportement tres complexe des collo?des est retie B la 

thermodynamique hors tquilibre avec seulement trois constantes materielles. 

IRREVERSIBLE THERMODYNAMIK FUR DIE RHEOLOGISCHEN EIGENSCHAFTEN 
VON KOLLOIDEN 

Z~~fa~n~Die viskoclastis~hen und plastischen Eigenschaften kugeif~~ger Kolloide wurden 
auf der Basis der streng Iinearen Onsager-Theorie fur irreversible Prozesse behandelt. Im Fall von Emul- 
sionen wurde der EinfluB der Grenzflichenspannung beriicksichtigt. Das komplizierte mechanische Ver- 
halten der Kolloide wurde rnittels der klassischen Nicht-Gleichgewichts-Thermodynamik mit nur drei 

Materialkonstanten dargestellt. 

TEPMO~~HAM~KA HEOEPAT~MbIX IIPOHECCOB IIPH O~~CAH~~ 
PEOJIOI-WIECKMX CBOHCTB KOJUIOMflOB 

AueoTauW-Hs naae~rioii Teopaa HeO6paTHMblX nposeccoa OH3arepa t3bmeneHbI aa3aonnacwwb~e li 
IInaCTwIHble XapaKTepecTHKB c@epwiecKax ROnnOHllOB. Ana 3Mynbcaii KpOMe TOrO y*aTb*BaeTcn 

3@@2~~~e~~a3~oro HaTmeHar. Cnoxmoe MexaHmecKoe noBenemie Komo~no~ 0micbmaeTcsi Knaccm 

~~KO~H~~aBHOB~HOiiTe~MO~ItHaMIIKOiiCttC~O~b30Ba~~eMTO~bKOTpeXM~Tep~a~bH~XKOHCTaHT. 


